Table 1. Fractional coordinates ( $\times 10^4$ ) and equivalent Table 2. Selected bond distances (Å) and bond isotropic thermal factors ( $\times 10^3 \text{ Å}^2$ ) for  $\alpha$ -cyclopiazonic acid

angles (°) for  $\alpha$ -cyclopiazonic acid

| $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |           |            |            |                  |         |  |
|----------------------------------------------------------------------------------------------|-----------|------------|------------|------------------|---------|--|
|                                                                                              | x         | у          | <b>z</b> . | $U_{eq}$         |         |  |
| NI <i>A</i>                                                                                  | 3016 (6)  | 86 (5)     | 9126 (1)   | 69 ( <u>2</u> )  |         |  |
| C1 <i>A</i>                                                                                  | 3841 (7)  | 1089 (6)   | 9073 (1)   | 62 (2)           |         |  |
| C2A                                                                                          | 3123 (7)  | 2132 (6)   | 9017 (1)   | 56 (2)           | (       |  |
| C3A                                                                                          | 3468 (6)  | 3485 (6)   | 8948 (1)   | 55 (2)           | (       |  |
| C4 <i>A</i>                                                                                  | 4437 (6)  | 4147 (6)   | 9107 (1)   | 51 (2)           | (       |  |
| C5A                                                                                          | 5730 (6)  | 4557 (7)   | 9018 (1)   | 59 (2)           | 0       |  |
| C6A                                                                                          | 5817 (7)  | 5919 (7)   | 9040 (1)   | 57 (2)           | (       |  |
| C7A                                                                                          | 4593 (6)  | 6405 (7)   | 9125 (1)   | 54 (2)           | (       |  |
| N2A                                                                                          | 3822 (5)  | 5382 (5)   | 9165 (1)   | 52 (1)           |         |  |
| C8A                                                                                          | 2403 (6)  | 5239 (6)   | 9154 (1)   | 54 (2)           |         |  |
| CYA                                                                                          | 2286 (6)  | 4444 (6)   | 8946 (1)   | 55 (2)           |         |  |
| CIUA                                                                                         | 953 (6)   | 3823 (6)   | 8903 (1)   | 62 (2)           |         |  |
| CIIA                                                                                         | 725 (7)   | 2505 (6)   | 8996 (1)   | 57 (2)           |         |  |
| CIZA                                                                                         | - 449 (7) | 1960 (8)   | 9037 (1)   | 75 (2)           |         |  |
| CI3A                                                                                         | - 515 (8) | 641 (8)    | 9104 (1)   | 81 (2)           |         |  |
| CI4A                                                                                         | 573 (8)   | - 103 (7)  | 9138 (1)   | 73 (2)           |         |  |
| CISA                                                                                         | 1/40 (8)  | 511 (7)    | 9105 (1)   | 61 (2)           |         |  |
| CIGA                                                                                         | 1825 (7)  | 1/96 (6)   | 9037 (1)   | 51 (2)           |         |  |
| C17A                                                                                         | 0833 (8)  | 6654 (8)   | 8986 (1)   | 75 (2)           |         |  |
| C18A                                                                                         | 19/7 (6)  | 6151 (9)   | 8892 (1)   | 98 (3)           |         |  |
| C19A                                                                                         | 1942 (6)  | 4537 (6)   | 9360 (1)   | 66 (2)           |         |  |
| 014                                                                                          | 6521 (5)  | 2771 (5)   | 9128 (1)   | 68 (2)           |         |  |
| 024                                                                                          | 6763 (6)  | 7007 (6)   | 894/(1)    | 85 (1)           |         |  |
| 034                                                                                          | 4334 (4)  | 7552 (4)   | 9010(1)    | (2)              |         |  |
| NIR                                                                                          | 4884 (5)  | - 5635 (5) | 9131 (1)   | 65 (1)<br>58 (1) |         |  |
| CIB                                                                                          | 4211 (6)  | -4590 (6)  | 9090(1)    | 58 (1)<br>50 (2) |         |  |
| C28                                                                                          | 4928 (6)  | - 3503 (6) | 9776 (1)   | 39 (2)<br>40 (2) |         |  |
| C3B                                                                                          | 4749 (6)  | -2143(5)   | 0822 (1)   | 47 (2)<br>52 (2) |         |  |
| C4B                                                                                          | 4001 (6)  | -1302(6)   | 9662 (1)   | 53 (2)           |         |  |
| C5B                                                                                          | 2550 (7)  | -1198(7)   | 9674 (1)   | 57 (2)           |         |  |
| C6B                                                                                          | 2267 (7)  | 155 (7)    | 9695 (1)   | 59 (2)           |         |  |
| C7B                                                                                          | 3443 (7)  | 857 (7)    | 9723 (1)   | 65 (2)           | F18     |  |
| N2 <i>B</i>                                                                                  | 4451 (5)  | 10 (5)     | 9705 (1)   | 59 (1)           |         |  |
| C8B                                                                                          | 5600 (7)  | 37 (6)     | 9839 (1)   | 66 (2)           |         |  |
| C9B                                                                                          | 6049 (6)  | - 1402 (6) | 9833 (1)   | 60 (2)           |         |  |
| C10B                                                                                         | 6909 (7)  | - 1671 (6) | 9631 (1)   | 63 (2)           | HOL ZAR |  |
| C11 <i>B</i>                                                                                 | 7103 (6)  | - 3086 (6) | 9591 (1)   | 57 (2)           | TIOLZAP |  |
| C12B                                                                                         | 8152 (7)  | - 3676 (7) | 9493 (1)   | 71 (2)           | JOHNSON |  |
| C13B                                                                                         | 8115 (7)  | - 5015 (7) | 9455 (1)   | 70 (2)           | Natio   |  |
| C14B                                                                                         | 7102 (7)  | - 5798 (7) | 9508 (1)   | 66 (2)           | NOLTE.  |  |
| C15B                                                                                         | 6059 (7)  | - 5192 (6) | 9613 (Ì)   | 55 (2)           | Porki   |  |
| C16B                                                                                         | 6078 (6)  | - 3874 (6) | 9650 (l)   | 52 (2)           | 1 61 Ku |  |
| C17 <i>B</i>                                                                                 | 1043 (8)  | 650 (8)    | 9700 (l)   | 80 (2)           | SHELDRI |  |
| C18 <i>B</i>                                                                                 | 776 (11)  | 1963 (7)   | 9713 (2)   | 143 (4)          | struct  |  |
| C19 <i>B</i>                                                                                 | 5260 (8)  | 374 (7)    | 10082 (1)  | 81 (2)           | SHELDRI |  |
| C20B                                                                                         | 6599 (7)  | 1004 (7)   | 9759 (1)   | 92 (2)           | soluti  |  |
| 01 <i>B</i>                                                                                  | 1783 (4)  | - 2105 (4) | 9665 (1)   | 79 (1)           | solutio |  |
| O2 <i>B</i>                                                                                  | -23 (5)   | - 215 (7)  | 9694 (1)   | 128 (2)          | STEYN,  |  |
| O3 <i>B</i>                                                                                  | 3552 (5)  | 2018 (5)   | 9759 (1)   | 90 (2)           | 4707-   |  |

|            | A         | В         |
|------------|-----------|-----------|
| C5C6       | 1.427 (9) | 1.444 (8) |
| C6C7       | 1.467 (8) | 1.435 (8) |
| C6C17      | 1.347 (9) | 1.374 (9) |
| C17-02     | 1.411 (8) | 1.429 (9) |
| C17-C18    | 1.422 (9) | 1.397 (9) |
| C5C6C7     | 108.7 (6) | 109.4 (6) |
| C5-C6-C17  | 126.2 (7) | 123.8 (7) |
| C7-C6-C17  | 125.1 (7) | 126.7 (7) |
| C6C17O2    | 119.3 (8) | 118.9 (7) |
| C6-C17-C18 | 123.2 (8) | 123.5 (9) |
| O2-C17-C18 | 117.5 (8) | 117.6 (8) |
|            |           |           |



1. Perspective view with atomic numbering scheme.

#### References

- FEL, C. W. (1968). Tetrahedron, 24, 2101-2119.
- N, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge onal Laboratory, Tennessee, USA.
- M. J., STEYN, P. S. & WESSELS, P. L. (1980). J. Chem. Soc. n Trans. 1, pp. 1057-1065.
- ICK, G. M. (1976). SHELX76. A program for crystal ure determination. Univ. of Cambridge, England,
- ICK, G. M. (1986). SHELXS86. A program for the on of crystal structures. Univ. of Göttingen, Germany.
- P. S. & WESSELS, P. L. (1978). Tetrahedron Lett. 47, 4707-4710.

Acta Cryst. (1992). C48, 552-554

## Structure of Citreohybridone A

# BY MARI KUBOTA, SHIGERU OHBA,\* SEIJI KOSEMURA, KIMIHIRO MATSUNAGA AND SHOSUKE YAMAMURA

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

(Received 18 June 1991; accepted 12 August 1991)

Abstract.  $C_{30}H_{38}O_9$ ,  $M_r = 542.6$ , orthorhombic,  $P2_{1}2_{1}2_{1}$ , a = 13.119(1),b = 22.204(3),c =V = 2874.5 (5) Å<sup>3</sup>, 9.868 (1) Å, Z = 4. $D_x =$ 

 $1.25 \text{ Mg m}^{-3}$  $\lambda$ (Mo K $\alpha$ ) = 0.71073 Å,  $\mu =$  $0.086 \text{ mm}^{-1}$ , F(000) = 1160, T = 297 K, R = 0.067for 1914 observed unique reflections. The relative structure of a new cytotoxic substance against HeLa cells has been determined by single-crystal X-ray

\* To whom correspondence should be addressed.

0108-2701/92/030552-03\$03.00

© 1992 International Union of Crystallography

Table 1. Positional parameters (× 10<sup>4</sup>) and equivalent isotropic temperature factors (Hamilton, 1959)

|     | x         | у        | Z         | $B/B_{eq}(Å^2) \times 10$ |
|-----|-----------|----------|-----------|---------------------------|
| Cl  | 630 (5)   | 3030 (3) | 6841 (7)  | 30                        |
| C2  | 622 (5)   | 3677 (3) | 6340 (8)  | 38                        |
| C3  | 1695 (6)  | 3946 (3) | 6385 (8)  | 40                        |
| C4  | 2441 (5)  | 3618 (3) | 5486 (8)  | 39                        |
| C5  | 2476 (5)  | 2940 (3) | 5962 (7)  | 29                        |
| C6  | 2905 (5)  | 2494 (3) | 4936 (8)  | 34                        |
| C7  | 3256 (5)  | 1924 (3) | 5621 (7)  | 30                        |
| C8  | 2400 (4)  | 1592 (3) | 6400 (6)  | 22                        |
| C9  | 1670 (4)  | 2059 (3) | 7052 (6)  | 23                        |
| C10 | 1429 (4)  | 2634 (3) | 6197 (7)  | 23                        |
| CII | 749 (5)   | 1726 (3) | 7584 (7)  | 30                        |
| C12 | 815 (5)   | 1179 (3) | 8133 (7)  | 29                        |
| C13 | 1826 (5)  | 848 (3)  | 8338 (7)  | 34                        |
| C14 | 2774 (5)  | 1200 (3) | 7647 (6)  | 26                        |
| C15 | 3160 (5)  | 1551 (3) | 8853 (7)  | 29                        |
| C16 | 2794 (5)  | 1429 (3) | 10016 (7) | 33                        |
| C17 | 2042 (6)  | 949 (3)  | 9842 (7)  | 40                        |
| C18 | 3106 (7)  | 1627 (4) | 11406 (8) | 57                        |
| C19 | 3645 (5)  | 770 (3)  | 7240 (7)  | 31                        |
| C20 | 1739 (6)  | 176 (3)  | 7995 (9)  | 49                        |
| C21 | - 127 (6) | 865 (4)  | 8652 (9)  | 55                        |
| C22 | 1862 (5)  | 1159 (3) | 5373 (7)  | 32                        |
| C23 | 1182 (5)  | 2446 (3) | 4769 (7)  | 29                        |
| C24 | 3510 (6)  | 3883 (4) | 5638 (11) | 61                        |
| C25 | 2139 (7)  | 3701 (4) | 3991 (9)  | 55                        |
| C26 | 1929 (8)  | 4344 (4) | 8609 (11) | 76                        |
| C27 | 2310 (10) | 4179 (6) | 9979 (13) | 123                       |
| C28 | 4790 (7)  | 38 (4)   | 8084 (10) | 64                        |
| C29 | 4154 (9)  | 2467 (5) | 9094 (10) | 85                        |
| C30 | 5197 (9)  | 2675 (5) | 8973 (11) | 100                       |
| 01  | 2069 (4)  | 3903 (2) | 7775 (5)  | 48                        |
| O2  | 1478 (9)  | 4789 (3) | 8325 (9)  | 158                       |
| O3  | 2048 (3)  | 2366 (2) | 4040 (4)  | 34                        |
| O4  | 345 (3)   | 2344 (2) | 4281 (5)  | 41                        |
| O5  | 3960 (4)  | 474 (2)  | 8319 (5)  | 50                        |
| O6  | 4009 (4)  | 717 (2)  | 6157 (5)  | 49                        |
| 07  | 3997 (4)  | 1911 (2) | 8624 (5)  | 48                        |
| O8  | 3418 (6)  | 2722 (3) | 9613 (8)  | 96                        |
| 09  | 1634 (4)  | 659 (3)  | 10745 (5) | 63                        |

Table 2. Selected bond lengths (Å) and bond angles (°)

| C1—C2      | 1.519 (10) | C9-C10      | 1.563 (9)  |
|------------|------------|-------------|------------|
| CIC10      | 1.509 (9)  | C9C11       | 1.511 (9)  |
| C2-C3      | 1.530 (10) | C10-C23     | 1.505 (10) |
| C3—C4      | 1.508 (10) | C11-C12     | 1.333 (9)  |
| C4C5       | 1.578 (10) | C12-C13     | 1.530 (9)  |
| C5-C6      | 1.524 (10) | C13-C14     | 1.619 (9)  |
| C5-C10     | 1.550 (9)  | C13-C17     | 1.528 (10) |
| C6-C7      | 1.507 (10) | C14—C15     | 1.510 (9)  |
| C603       | 1.458 (8)  | C15-C16     | 1.273 (10) |
| C7—C8      | 1.548 (9)  | C16-C17     | 1.462 (10) |
| C8—C9      | 1.551 (9)  | C23—O3      | 1.356 (8)  |
| C8-C14     | 1.585 (9)  |             |            |
|            |            |             |            |
| C2-C1-C10  | 114.8 (6)  | C1-C10-C23  | 114.0 (5)  |
| C1-C2-C3   | 110.7 (6)  | C5-C10-C9   | 105.0 (5)  |
| C2-C3-C4   | 113.0 (6)  | C5-C10-C23  | 99.9 (5)   |
| C3C4C5     | 107.7 (6)  | C9-C10-C23  | 108.8 (5)  |
| C4-C5-C6   | 115.7 (6)  | C9-C11-C12  | 122.4 (6)  |
| C4-C5-C10  | 115.9 (5)  | C11-C12-C13 | 123.2 (6)  |
| C6-C5-C10  | 98.2 (5)   | C12-C13-C14 | 112.2 (5)  |
| C5-C6-C7   | 111.1 (6)  | C12-C13-C17 | 102.6 (5)  |
| C5-C6-O3   | 104.2 (5)  | C14-C13-C17 | 101.3 (5)  |
| C7-C6-O3   | 110.1 (5)  | C8-C14-C13  | 110.7 (5)  |
| C6C7C8     | 113.6 (5)  | C8-C14-C15  | 115.6 (5)  |
| C7-C8-C9   | 109.6 (5)  | C13-C14-C15 | 110.1 (5)  |
| C7-C8-C14  | 115.0 (5)  | CI4-CI5-CI6 | 118.3 (6)  |
| C9-C8-C14  | 103.7 (5)  | C15-C16-C17 | 107.7 (6)  |
| C8-C9-C10  | 116.6 (5)  | C13-C17-C16 | 110.3 (6)  |
| C8-C9-C11  | 108.1 (5)  | C10-C23-O3  | 110.6 (5)  |
| C10-C9-C11 | 115.2 (5)  | C5-C6-O3    | 104.2 (5)  |
| C1-C10-C5  | 115.0 (5)  | C6          | 107.4 (5)  |
| C1-C10-C9  | 112.9 (5)  |             | ( )        |
|            | (-)        |             |            |

diffraction. The C—C bond at the junction of the five- and six-membered rings is as long as 1.619(9) Å, which may be due to strain in the fused ring structure.

**Experimental.** Crystals (I) were grown from an *n*-hexane and benzene solution. X-ray intensities were measured on a Rigaku AFC-5 four-circle diffractometer with graphite-monochromatized Mo Ka radiation,  $\theta - 2\theta$ , scan speed 6° min<sup>-1</sup> in  $\theta$ , crystal size  $0.32 \times 0.47 \times 0.35$  mm,  $0 \le h \le 17$ ,  $0 \le k \le 28$ ,  $0 \le l \le 22$  ( $4 < 2\theta \le 55^{\circ}$ ), 3703 reflections measured, 1914 reflections observed with  $|F_o| > 3\sigma(|F_o|)$ ; lattice constants based on 22  $2\theta$  values ( $20 < 2\theta < 30^{\circ}$ ). Mean ratio of  $|F_o|$  of five standard reflections,  $0.99 \le \sum(|F_o|/|F_o|_{\text{initial}})/5 \le 1.00$ . Absorption correction by Gauss numerical integration method (Busing & Levy, 1957; relative transmission factors 0.94-0.98). Systematic absences ( $h00 \ h \ \text{odd}$ ;  $0k0 \ k \ \text{odd}$ ;  $00l, l \ \text{odd}$ ) indicated the space group to be  $P2_12_12_1$ .



The structure was solved by direct methods with MULTAN78 (Main, Hull, Lessinger, Germain, Declerca & Woolfson, 1978); coordinates of all the non-H atoms refined by block-diagonal least squares with anisotropic thermal parameters using the UNICSIII program system (Sakurai & Kobayashi, 1979); 23 of the 38 H atoms were located by difference syntheses and the others were calculated and refined isotropically. Function  $\sum w(|F_o| - |F_c|)^2$  was minimized with weight  $w^{-1} = \sigma^2(|F_o|) + \sigma^2(|F_o|)$  $(0.015|F_o|)^2$ . Final R = 0.067, wR = 0.072, S = 2.76,  $\Delta/\sigma < 0.18$ , number of reflections/parameters = 3.8,  $-0.32 < \Delta \rho < 0.64$  e Å<sup>-3</sup>. Complex neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Calculations were performed with a FACOM M-780/10 computer at Keio University. Atomic coordinates are given in Table 1, and selected bond lengths and bond angles in Table 2.\* The molecular structure is shown in Fig. 1. Absolute configuration was not determined, because the anomalous dispersion was negligibly small.

\* Lists of structure factors, anisotropic thermal parameters and positional and thermal parameters for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54499 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0528]



Fig. 1. An ORTEP drawing (Johnson, 1965) of the molecule with 20% probability ellipsoids. H atoms are represented by circles of radius 0.08 Å.

**Related literature.** Citreohybridone A and B are new sesterterpenoid-type metabolites of a hybrid strain KO 0031 derived from *Penicillium citreo-viride* B. (IFO 6200 and 4692) (Kosemura, Matsunaga, Yamamura, Kubota & Ohba, 1991).

#### References

BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180-182.

HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KOSEMURA, S., MATSUNAGA, K., YAMAMURA, S., KUBOTA, M. & OHBA, S. (1991). Tetrahedron Lett. In the press.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- SAKURAI, T. & KOBAYASHI, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69–77.

Acta Cryst. (1992). C48, 554-556

## Structure of 2-(4-Aminophenyl)-1,3-propanedinitrile

### BY PAUL D. ROBINSON\*

Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA

AND M. J. BAUSCH AND G. P. JIRKA

Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA

(Received 10 June 1991; accepted 12 September 1991)

Abstract.  $C_9H_7N_3$ ,  $M_r = 157.17$ , orthorhombic,  $Pna2_1$ , a = 8.758 (5), b = 16.795 (6), c = 5.646 (4) Å, V = 831 (1) Å<sup>3</sup>, Z = 4,  $D_x = 1.257$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu = 0.75$  cm<sup>-1</sup>, F(000) = 328, T = 296 K, R = 0.044, 475 unique observed reflections. The solid-state structure for 2-(4-aminophenyl)-1,3propanedinitrile indicates that an H atom is bound at C(2).

**Experimental.** The title compound was prepared following the procedure of Hartzler (1964). A solution of acetone (20 cm<sup>3</sup>), Raney nickel active catalyst (1.8 g) and 4-nitrophenylmalononitrile (2.5 g, 0.013 mol) was subjected to  $3.45 \times 10^5$  Pa of hydrogen for  $2\frac{1}{2}$  h in a Parr apparatus, at room temperature with agitation. The solution was then concentrated to give deep orange needles which were

0108-2701/92/030554-03\$03.00

washed with water and recrystallized from a boiling ethanol:water (1:1) mixture. The isolated needles (1.14 g, 56% yield) melted at 408–409 K (lit. 408–409 K; Hartzler, 1964). NMR (CDCl<sub>3</sub>):  $\delta$  7.237, 7.204, 6.721, 6.693 (*AA'BB'*, 4H),  $\delta$  4.905 (*s*, 1H),  $\delta$  3.89 (broad *s*).

© 1992 International Union of Crystallography

<sup>\*</sup> To whom all correspondence should be addressed.